

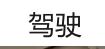
1

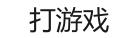
人工智能系统 System for Al

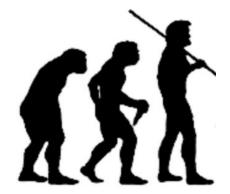
强化学习系统 System for Reinforcement Learning

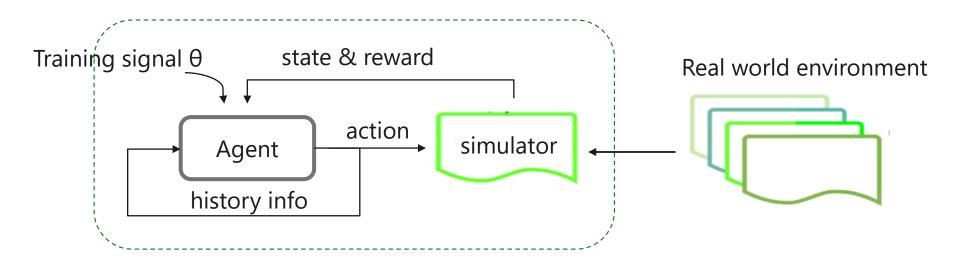
真实世界的问题: 在不确定的情况下做正确的 序列选择



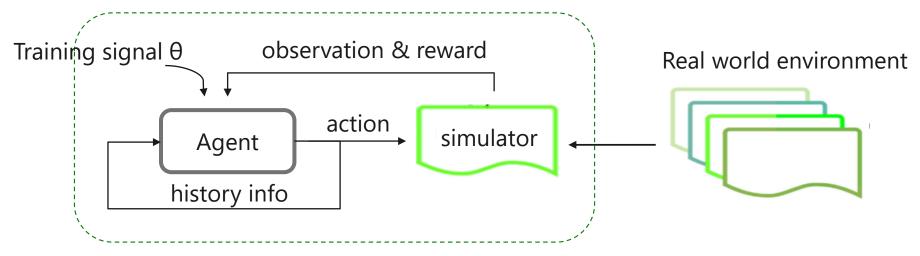






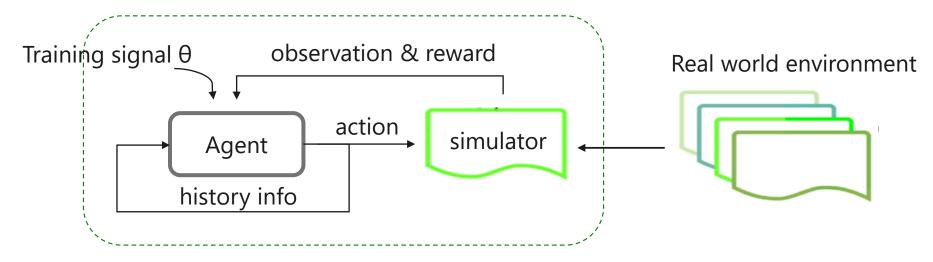


- *Explore the world (explore)*
- Use experience to guide future decisions (*exploit*)



- Each time step t
 - Agent takes an **action** a_t
 - World updates given **action** at , emits **observation** o_t and **reward** r_t
 - Agent receives **observation** o_t and **reward** r_t

强化学习



- **History** $h_t = (a_1, o_1, r_1, \dots, a_t, o_t, r_t)$
- Agent chooses action based on history
- State is information assumed to determine what happens next
 - Function of history $s_t = (h_t)$
 - State s_t is **Markov** if and only if $p(s_{t+1} | s_t, a_t) = p(s_{t+1} | h_t, a_t)$
 - Future is independent of past given present

- Goal select actions to maximize total expected future reward
 - balancing immediate & long-term rewards
- **Policy** π determines how the agent chooses actions
 - Deterministic policy

$$\pi(s) = a$$

• Stochastic policy

$$\pi(a|s) = \Pr(a_t = a|s_t = s)$$

• Value function expected discounted sum of future rewards under a policy π

$$V^{\pi}(s_t = s) = \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots | s_t = s]$$

强化学习和机器学习有什么差别?

强化学习系统面临什么和机器学习系统不一样的挑战?

大量难以复用的强化 学习代码库

Repositories	22K
Code	586K+
Commits	22K
lssues	6K
Discussions Beta	0
Packages	0
Marketplace	0
Topics	62
Wikis	ТК
Users	1K
Lenensee	

anguages							
Python	10,829						
Jupyter Notebook	5,492						
C++	522						
HTML	513						
Java	455						
MATLAB	282						
JavaScript	262						
C#	237						
ASP	203						
TeX	171						

22	2,118 repository results	Sort: Best matc
Ę.	dennybritz/ reinforcement-learning	
	Implementation of Reinforcement Learning Algorithms. Python, OpenAl Gym, Tensord Solutions to accom	low. Exercises and
	🟠 14.6k 🛛 🕒 Jupyter Notebook 🛛 MIT license Updated on May 1	
	ShangtongZhang/ reinforcement-learning- an-introduction	
ч ща	Python Implementation of Reinforcement Learning : An Introduction	
	reinforcement-learning artificial-intelligence	
	🛠 8.9k 🕒 Python MIT license Updated on May 22	

tenso	orcement-learni orflow-tutorials	a3c		machine-le q-network	ddpg	q-learning actor-critic	dqn asvno	policy-gradier hronous-advan:	ritic double-
priori	itized-replay	sarsa-lai	· · ·	dueling-do	15	ep-determinist			y-optimization
рро									
1 5.3	k 🔵 Python	MIT lic	ense	Updated 25	days ago	C			

为什么不能复用这些存在的代码库呢?

算法上的一点差别可能会极大影响结果

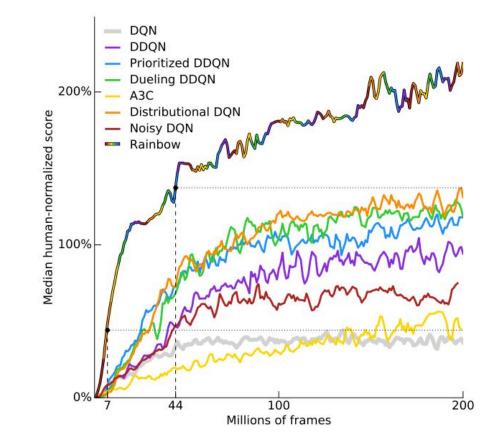
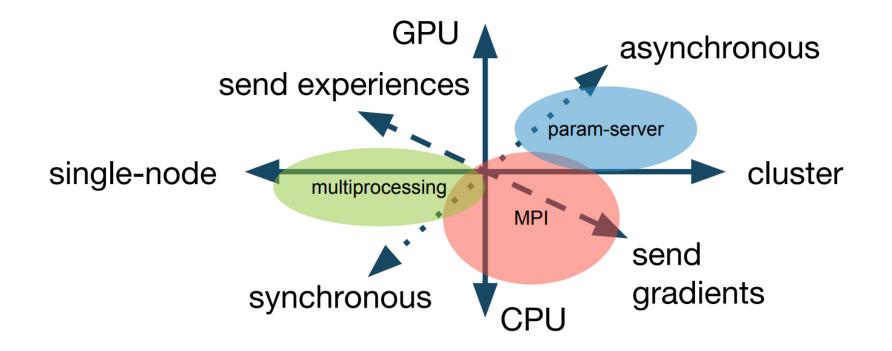
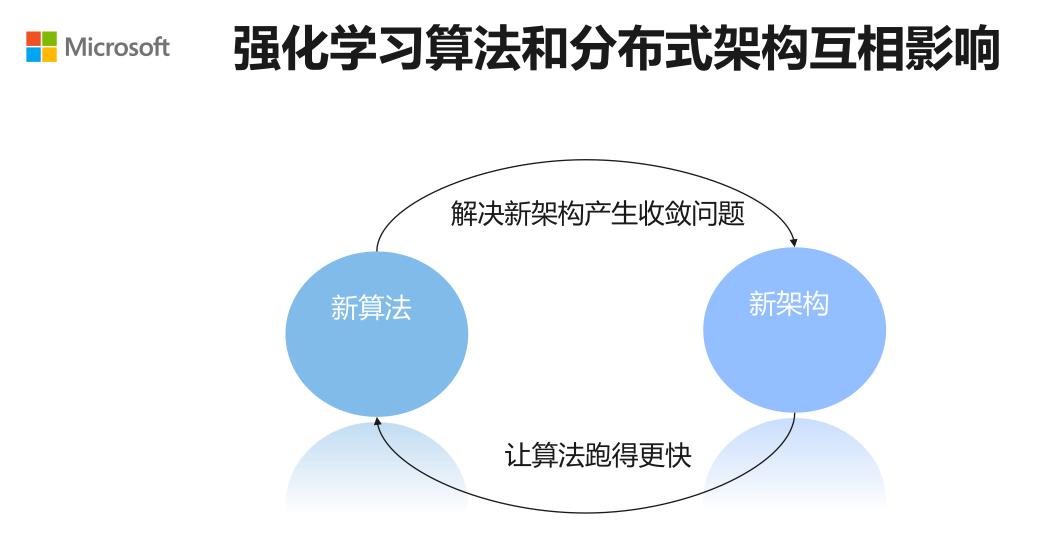


Figure 2. 6 tricks in DQN will performs different performance from rainbow paper.



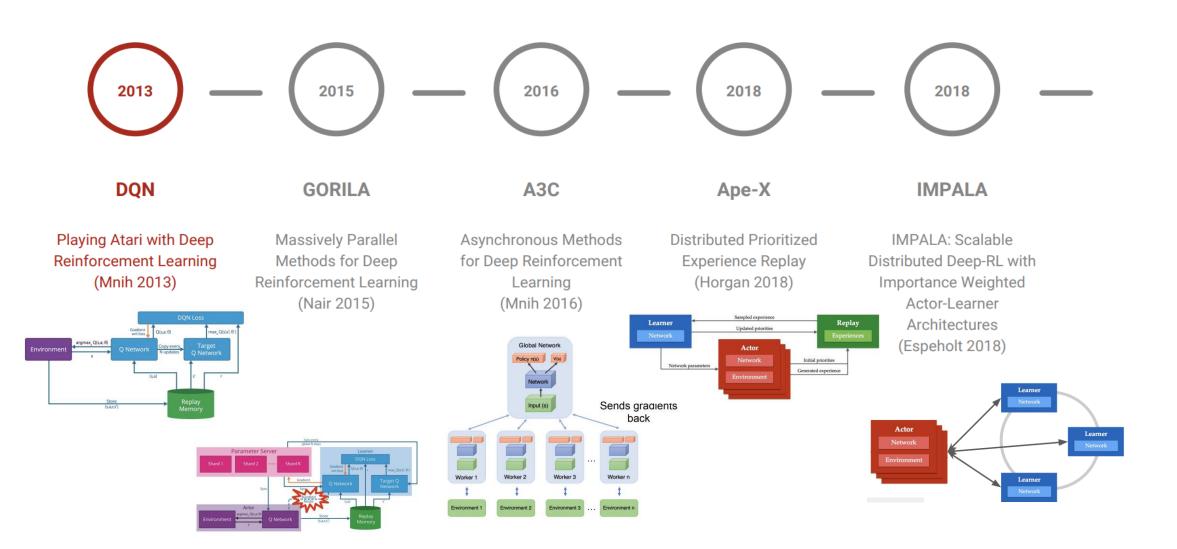
不同的强化学习算法结构差异很大

Algorithm Family	Policy Evaluation	Replay Buffer	Gradient-Based Optimizer	Other Distributed Components
DQNs	Х	Х	Х	
Policy Gradient	X		X	
Off-policy PG	Х	X	X	
Model-Based/Hybrid	Х		Х	Model-Based Planning
Multi-Agent	Х	X	X	
Evolutionary Methods	Х			Derivative-Free Optimization
AlphaGo	X	X	X	MCTS, Derivative-Free Optimizati



强化学习算法和分布式架构互相影响

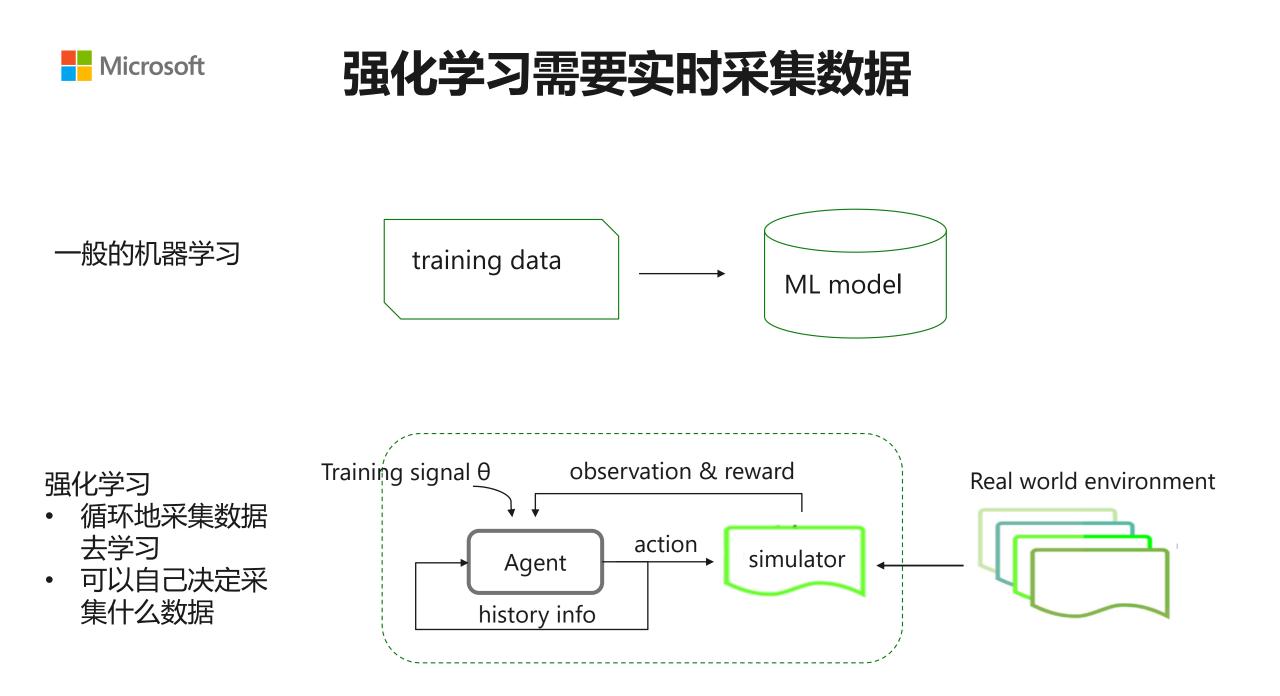
?



大量难以复用的强化学习代码

可扩展性的强化学习框架

- 具有良好的强化学习算法的抽象接口
- 可以跨深度学习平台使用 (e.g. tensorflow/pytorch)
- 可以支持各种物理执行模式 (e.g. GPU/CPU vs Sync/Async)
- 支持不同的分布式架构



采集数据的效率是收敛的关键!

可能面临的问题

- 和环境交互的效率低下,环境返回的结果时间较长
- 分布式rollout数据可行,但代码难写

- 支持复杂环境的并发采集
- 提供简单的分布式代码的编程方式

Apex框架让worker分布式地rollout data

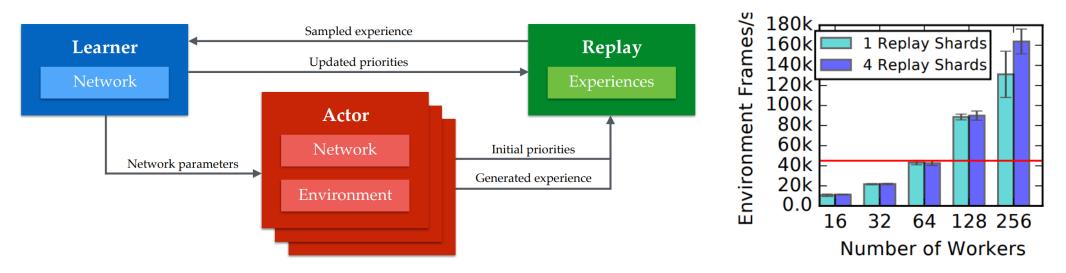


Figure 1. Apex architecture, multiply actors to rollout data in their own environment.

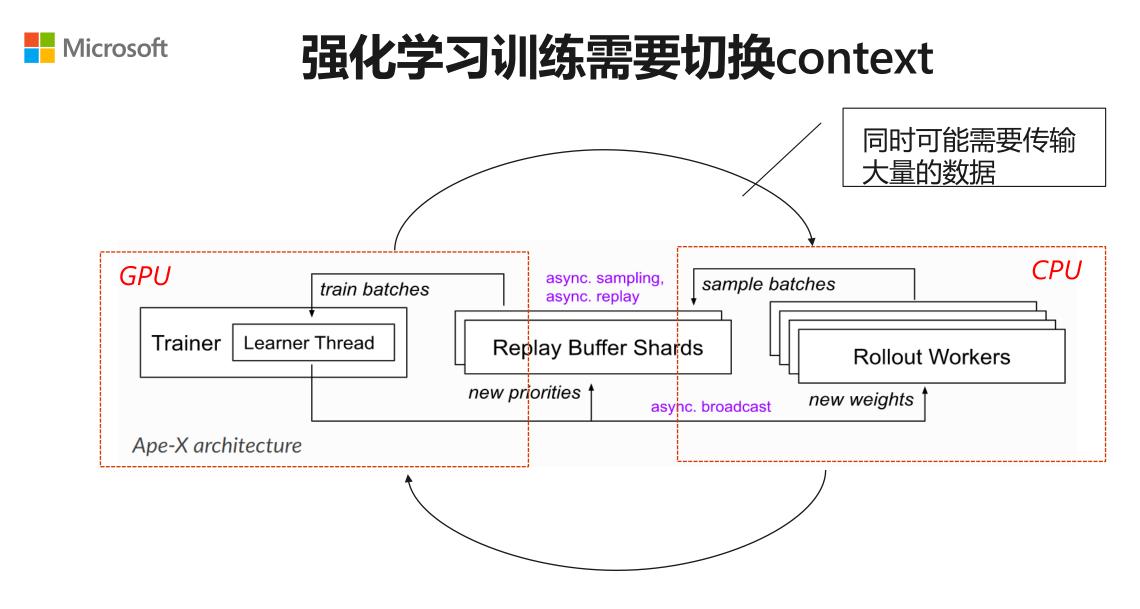


Figure 3. Context switch in Apex architecture

强化学习训练需要切换context

- 需要在不同的context (GPU/CPU) 间不停的切换
- 同时需要传输大量的数据

- 支持高性能的通信框架
- 优化数据的预处理
- 优化数据的传输

当前的强化学习平台

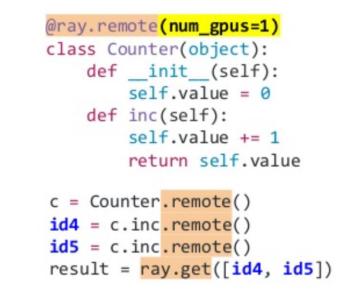
此照片,作者:

案例研究: Ray and RLlib

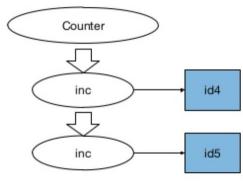
Ray is a fast and simple framework for building and running distributed applications.

•

- Ray provide a task parallel API
- @ray.remote def zeros(shape): return np.zeros(shape) @ray.remote def dot(a, b): return np.dot(a, b) id1 = zeros.remote([5, 5]) id2 = zeros.remote([5, 5]) id3 = dot.remote(id1, id2) result = ray.get(id3)

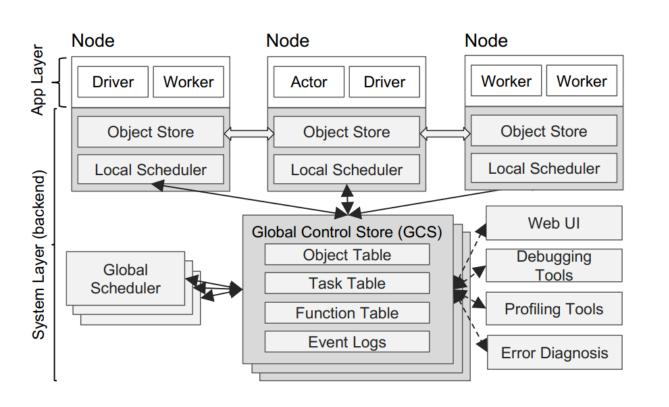


Ray provide an actor API



案例研究: Ray and RLlib

Ray is a fast and simple framework for building and running distributed applications.

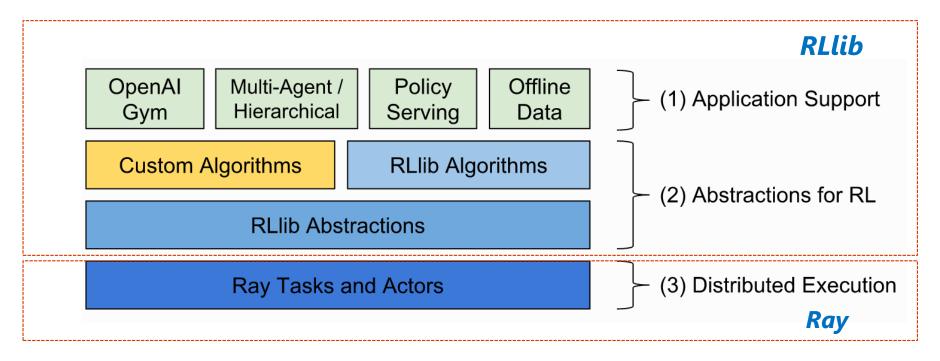


- Faster than Python multiprocessing on a single node
- Competitive with MPI in many workloads

- App Layer
 - Driver A process executing the user program
 - Worker A stateless process that executes remote functions invoked by a driver
 - Actor A stateful process that executes
- System Layer
 - Global Control Store(GCS)
 - A key-value store with pub-sub functionality
 - Distributed scheduler
 - Submitted first to local scheduler
 - Global scheduler considers each node's load and task's constraints to make scheduling decisions
 - Distributed object store
 - In-memory distributed storage to store the inputs/outputs, or stateless computation.
 - Implement the object store via shared memory
 - Use Apache Arrow as data formats

案例研究: Ray and RLlib

RLlib is an open-source library for reinforcement learning that offers both **high scalability** and a **unified API** for a variety of applications.



Github repo: <u>https://github.com/ray-project/ray/tree/master/rllib</u>

友好的分布式编程接口

```
if mpi.get rank() <= m:</pre>
    grid = mpi.comm world.split(0)
else:
    eval = mpi.comm world.split(
        mpi.get rank() % n)
if mpi.get rank() == 0:
    grid.scatter(
        generate hyperparams(), root=0)
    print(grid.gather(root=0))
elif 0 < mpi.get rank() <= m:</pre>
    params = grid.scatter(None, root=0)
    eval.bcast(
        generate model(params), root=0)
    results = eval.gather(
         result, root=0)
    grid.gather(results, root=0)
elif mpi.get rank() > m:
    model = eval.bcast(None, root=0)
    result = rollout(model)
    eval.gather(result, root=0)
```

a. Distributed control in MPI

Ray's distributed scheduler is a natural fit for the hierarchical control model, as nested computation can be implemented in Ray with no central task scheduling bottleneck.

```
@ray.remote
def rollout(model):
    # perform a rollout and
    # return the result
```

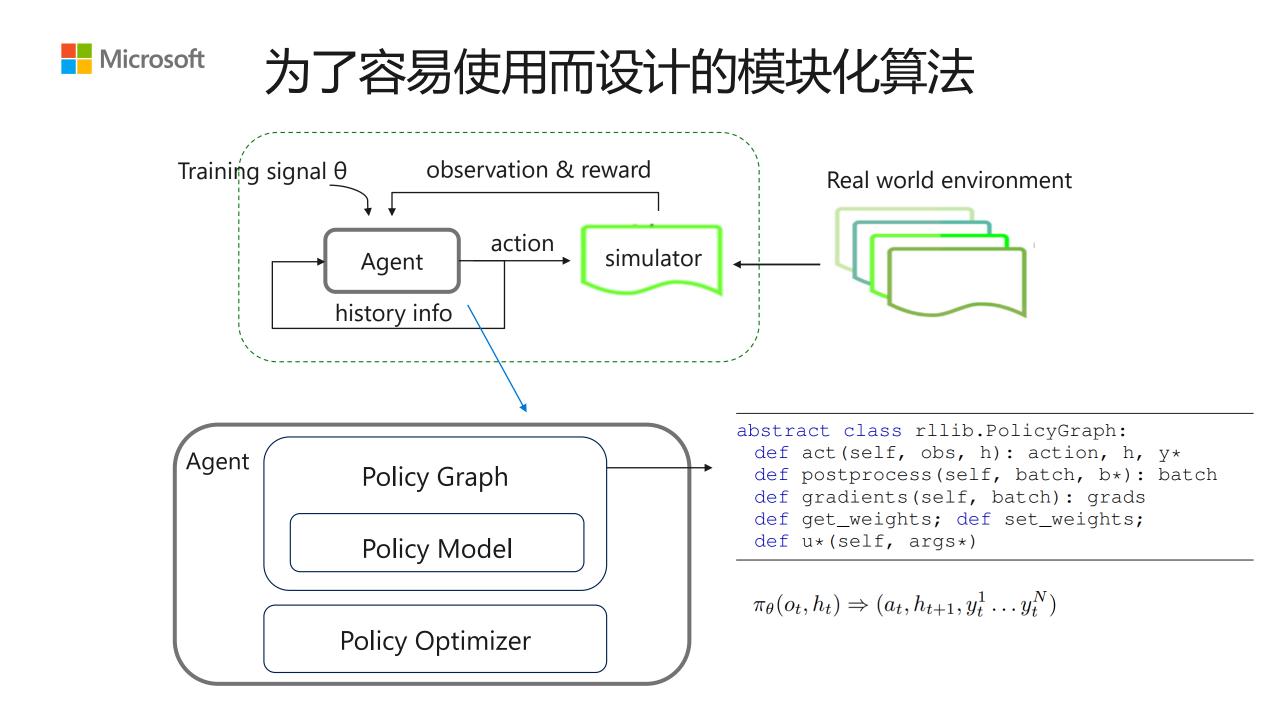
```
@ray.remote
def evaluate(params):
    model = generate_model(params)
    results = [rollout.remote(model)
        for i in range(n)]
    return results
```

```
param_grid = generate_hyperparams()
print(ray.get([evaluate.remote(p)
    for p in param_grid]))
```

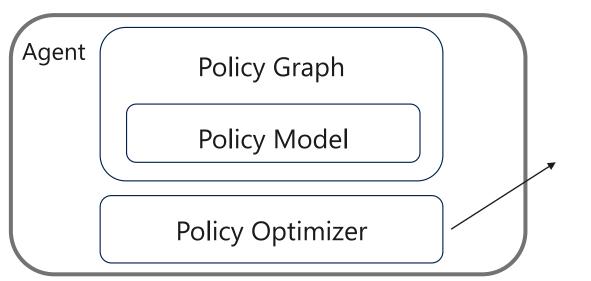
b. Hierarchical control in ray.

基于Ray的简单的异步DQN的例子

1	import ray	1	import ray			1	import ray		
2	from collections import deque	2	import thread	ng	at a va	1	import time	R	un script
3	import time Train	e r 3		A	ctors	2	from trainer in		
4	import threading	4	from dummy imp	port DQN, Env		3	from worker imp		
5	Remote decorator for	5				4	Trom worker imp		ray
6	from dummy import DON, Repl run in remote	6	BATCH_SIZE = 1	.0		5			
7		/	@ray.remote)		0	ray.init()	J	
8	@ray.remote	9	class Worker:)		/	(worker = Worker		•
9	class Trainer:	10	def <u>ini</u> t	(self):		9	trainer = Trair		
10	<pre>definit(self):</pre>	11	self.c	lqn = DQN()		10		<pre>i.remote() i.remote(trainer)</pre>	
11	<pre>self.steps = 0</pre>	12	self.e	env = Env()		11	i .	<pre>in.remote(worker)</pre>	
12	<pre>self.thread = None</pre>	13		0 = self.env.reset()		12		. ,	
13	self.dqn = DQN()	14	self.1	rainer = None		13	<pre>time.sleep(100)</pre>		
14	<pre>self.buffer = ReplayBuffer()</pre>	15		witten - []		14	ray.shutdown()		
15	self.worker = None	16 17	Self.t	puffer = []		14	ray.snucuown()		
16	<pre>self.checkpoint_interval = 5</pre>	18	def _run(s	elf):			\sim		
17		19		in range(10000):				Execute the tr	rainer and
18	<pre>def _run(self):</pre>	20	а	<pre>= self.dqn.act(self.s0)</pre>				actor in remo	te
19	<pre>for _ in range(10000):</pre>	21	s1	., r, done, _ = self.env.step(a)					'
20	<pre>self.steps += 1</pre>	22							
21	<pre>batch = self.buffer.sample()</pre>	23	if	done:					
22	self.dqn.train(batch)	24 25		<pre>self.s0 = self.env.reset() se:</pre>					
23	<pre>if self.steps % self.checkpoint_interval:</pre>	26	e.	self.s0 = s1					
24	<pre>weight = self.dqn.dump_weights()</pre>			f.buffer.append((self.s0, a, r, s1, dor	e))				
25	if self.worker is not None:	Start thread	for async						
26	self.worker.update_weights.remote(weig	training		len(self.buffer) == BATCH_SIZE:					
27	· · · · · · · · · · · · · · · · · · ·	30		if self.trainer is not None:					
28	<pre>def run(self, worker):</pre>	31		<pre>self.trainer.add_transitions.remot</pre>	e(self.buffer)				
29	self.worker = worker	32		self.buffer = []					
30	self.thread = threading.Thread(target=selfrun)	33 34	def run(se	lf, trainer):					
31	<pre>self.thread.start()</pre>	35	`	rainer = trainer					
32		36		<pre>chread = threading.Thread(target=selfru</pre>	ın)				
33	<pre>def add_transitions(self, trans):</pre>	37	self.t	hread.start()					
34	for row in trans:	38	×						
35	<pre>self.buffer.append(row)</pre>	39		e_weights(self, weights):					
		40	self.c	lqn.load_weights(weights)					



为了容易使用而设计的模块化算法



The policy optimizer is responsible for the performance-critical tasks of distributed sampling, parameter updates, and managing replay buffers.

grads = [ev.grad(ev.sample()) grads = [ev.grad(ev.sample()) samples = concat([ev.sample() grads = [ev.grad(ev.sample()) for ev in evaluators] for ev in evaluators] for ev in evaluators]) for ev in evaluators] for in range(NUM ASYNC GRADS): avg grad = aggregate(grads) pin in local gpu memory(samples) for in range(NUM ASYNC GRADS): grad, ev, grads = wait(grads) local_graph.apply(avg_grad) for in range(NUM SGD EPOCHS): grad, ev, grads = wait(grads) for ps, g in split(grad, ps_shards): weights = broadcast(local g.apply(local g.grad(samples) local graph.apply(grad) ps.push(g) local graph.weights()) weights = broadcast(local g.weights()) ev.set weights(ev.set_weights(concat(for ev in evaluators: for ev in evaluators: local graph.get weights()) [ps.pull() for ps in ps_shards]) ev.set weights(weights) ev.set weights(weights) grads.append(ev.grad(ev.sample())) grads.append(ev.grad(ev.sample())) (a) Allreduce (b) Local Multi-GPU (c) Asynchronous (d) Sharded Param-server

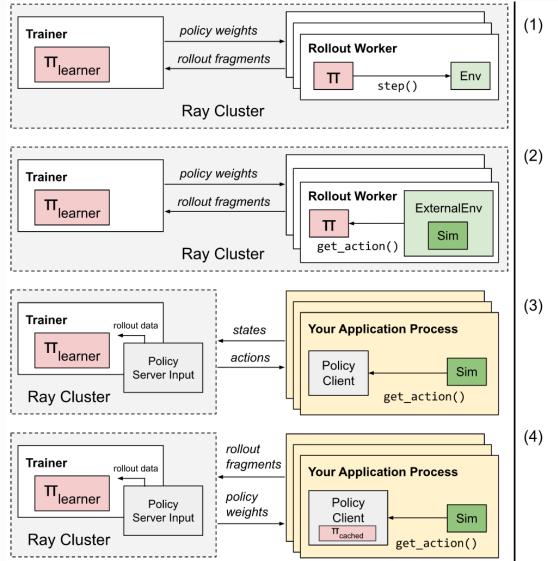
Figure 4. Pseudocode for four RLlib policy optimizer step methods. Each step() operates over a local policy graph and array of remote evaluator replicas.

Microsoft

支持的强化学习算法

- High throughput architectures
 - Distributed Prioritized Experience Replay(Ape-X-DQN, Ape-X-DDPG)
 - Importance Weighted Actor-Learner Architecture(IMPALA)
- Gradient-based
 - Advantage Actor-Critic(A2C, A3C)
 - Deep Deterministic Policy Gradients(DDPG, TD3)
 - Deep Q Networks(DQN, Rainbow)
 - Policy Gradients
 - Proximal Policy Optimization(PPO, APPO)
 - Soft Actor-Critic(SAC)
 - Single player AlphaZero
- Derivative-free
 - Augment Random Search(ARS)
 - Evolution Strategies
- Multi-agent
 - Monotonic Value Function Factorization(QMIX, VDN, IQN)
 - MADDPG

支持的复杂的环境



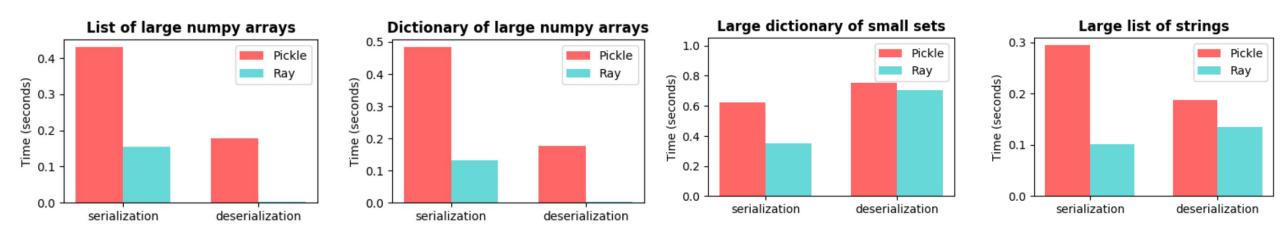
Standard environments (e.g., gym.Env, MultiAgentEnv types) are created and stepped by RLlib rollout workers.

- External environments (ExternalEnv) run in their own thread and pull actions as needed. RLlib still creates one external env class instance per rollout worker.
-) Applications running outside the Ray cluster entirely can connect to RLlib using PolicyClient, which computes actions remotely over RPC.
- PolicyClient can be configured to perform inference locally using a cached copy of the policy, improving rollout performance.

快速的序列化和反序列话

Serialization and deserialization are **bottlenecks in parallel and distributed computing**, especially in machine learning applications with large objects and large quantities of data.

- Goals
 - Very efficient with large numerical data (e.g. Numpy arrays and Pandas dataframes)
 - As fast as Pickle for general Python types
 - Compatible with shared memory (allowing multiple processes to use the same data without copying it)
 - **Deserialization** should be extremely fast (e.g. streaming)
 - language independent

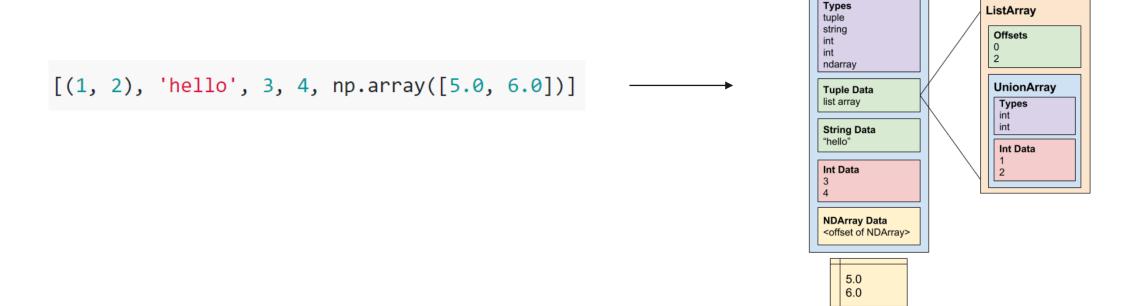


Microsoft

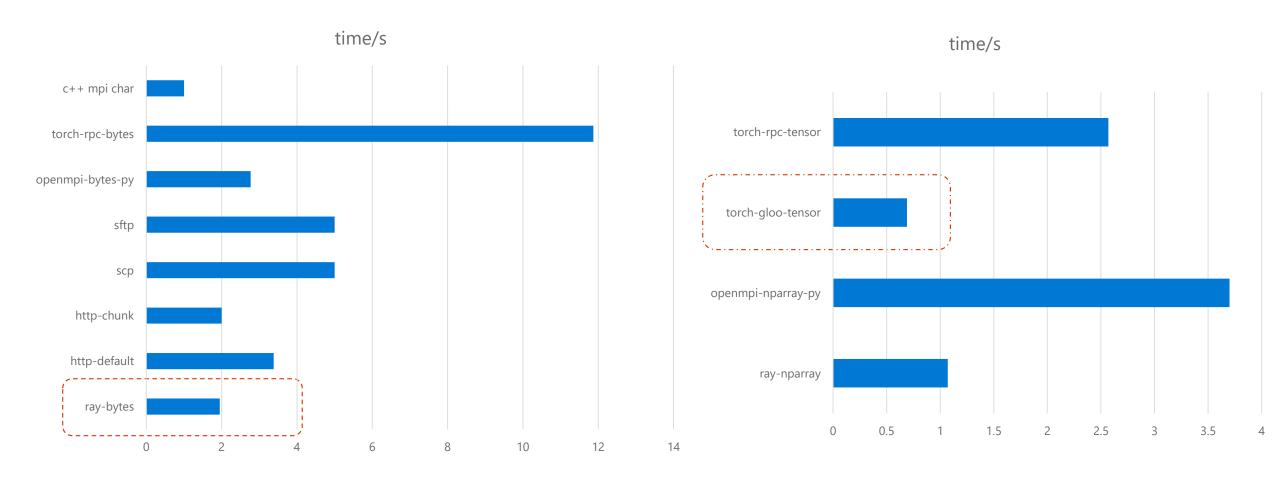
快速的序列化和反序列话

- Making **deserialization** fast is important.
 - An object may be serialized once and then deserialized many times
 - A common pattern is for many objects to be serialized in parallel and then aggregated and deserialized one at a time on a single worker making deserialization the bottleneck
- Deserialization is fast and barely visible
 - Using only the schema, can compute the offsets of each value in the data blob without scanning through the data blob (unlike Pickle, this is what enables fast deserialization)
 - Avoid copying or otherwise converting large arrays and other values during deserialization(the savings largely come from the lack of memory movement)

UnionArray



不同通信框架的速度评测



The speed of transferring 1GB data.

RLlib**的小总结**

- 优雅而简单的分布式编程语言
- 容错和高并发的分布式框架
- 通用的强化学习接口
- 为python对象优化的高效通信框架

在Rllib上实现一个新的RL算法需要多大的代价呢?

强化学习的其他挑战

- 可复现性 (e.g. SURREAL)
- 可解释性
- 从少量的数据中学习
- 安全限制
- 实时推理

. . .

- Ray: A Distributed Framework for Emerging AI Applications
- RLlib: Abstractions for Distributed Reinforcement Learning
- DISTRIBUTED PRIORITIZED EXPERIENCE REPLAY
- Rainbow: Combining Improvements in Deep Reinforcement Learning
- SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference
- IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
- Asynchronous Methods for Deep Reinforcement Learning
- SURREAL: Open-Source Reinforcement Learning Framework and Robot Manipulation Benchmark
- Challenges of Real-World Reinforcement Learning
- Apache Arrow https://arrow.apache.org/
- <u>https://wesmckinney.com/blog/arrow-streaming-columnar/</u>
- Modin(speed up the pandas in ray) https://github.com/modin-project/modin
- <u>https://www.zhihu.com/question/377263715</u>
- <u>https://www.slideshare.net/databricks/enabling-composition-in-distributed-reinforcement-learning-with-ray-rllib-with-eric-liang-and-richard-liaw</u>
- <u>https://github.com/deepmind/reverb</u>